
Hybrid Architecture for Data-dependent Superimposed Training in Digital
Receivers

Fernando Martı́n del Campo, René Cumplido,
Roberto Perez-Andrade

National Institute of Astrophysics, Optics and Electronics
Computer Science Department

C.P. 72840, Puebla, Mexico
{fmartin,rcumplio, j roberto pa}@inaoep.mx

A. G. Orozco-Lugo
CINVESTAV-IPN

Section of Communications
C.P. 07360, Mexico City, Mexico

aorozco@cinvestav.mx

Abstract

Many digital communications algorithms present
characteristics that make very difficult to implement
them in either a software solution or as a fully custom
hardware architecture. Their inherent complexity implies
two challenges at the same time: to process the information
as fast as possible to present the results when they
are required, and to build a system that meets the
power consumption and space constraints imposed by
the application, while trying to maintain a low design
intricacy. This work describes a hybrid hardware-software
architecture designed to run a wireless communication
algorithm named Data-dependent Superimposed Training.
The resulting system can be used partially or in its totality
to implement many other algorithms with similar needs,
and in fact it is an interesting source of information for
implementing solutions for some of the most common
operations encountered in the DSP field.

Keywords

Communications Algorithms, Data-dependent Superim-
posed Training, Hybrid Architecture, Hardware Accelera-
tors.

1 Introduction

As higher amounts of information are transmitted
through the current communication systems, processing
speed requirements have risen more and more. In addi-
tion, many of the operations required for the modulation,
channel encoding and decoding, and encryption, among
others, are very complex. Nevertheless, the cost and time

required by the design, building and testing of ASICs so-
lutions have motivated the emergence of new tools for the
creation of proof of concept designs, like the FPGAs. These
platforms have evolved to the point where it is possible
to create full computational systems in one programmable
chip, that can run a series of software applications and can
communicate to other peripherals both in the FPGA board
and outside of it. All these characteristics are, at a certain
point, very useful to implement a solution for a great vari-
ety of DSP problems found in digital communications algo-
rithms. This work concentrates in a wireless communica-
tions method called Data-dependent Superimposed Train-
ing (DDST), which is deeply discussed in [4], and whose
preliminary implementation (which only covers the chan-
nel estimation stage without the data recovery and with no
acceleration for the complex exponentials problem) can be
found in [6].

1.1 Processes commonly found in Digital
Communications Systems

There are many operations that DSP techniques, used in
digital communications, have to solve in order to accom-
plish their purpose. As the number of embedded multipliers
in integrated circuits is continuously increased, the efforts
in this field are concentrated in solving more complex op-
erations, like mathematical transforms (Fourier, cosine) or
transcendental functions, as exponential, hyperbolic, loga-
rithmic, power, and periodic functions.

Discrete Fourier transform and its inverse have an effi-
cient and relatively high speed implementation in the form
of the Fast Fourier Transform (FFT) algorithm. Several ar-
chitectures have been proposed ([1], [2]), and the leading
FPGA manufacturers offer them as modules in their IP li-
braries.

Transcendental functions have been solved through tech-

2008 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3474-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ReConFig.2008.52

355

niques and implementations that are rarely as efficient as the
FFT. For example, square root (an operation that belongs to
the power functions family) is usually implemented through
restoring and non-restoring iterative algorithms, which in-
crement the resolution of the calculation in only one bit per
iteration [3]. On the other hand, solutions for periodic func-
tions can be divided in two groups: iterative methods like
the CORDIC and BKM generators, and methods based on
mathematical series, like the Taylor and Chebyshev solu-
tions. This last kind of implementations have been out of
reach for the majority of the hardware architectures, due to
its high complexity and to the great amount of resources
that are required. Iterative solutions are commoner, but one
of their characteristics is its usually low speed, unless a full
pipelined approach is used, which increments the amount
of necessary resources and the complexity of the design.
Moreover, this technique is not suitable for applications
where just a few functions have to be resolved each time.

An additional characteristic of several digital communi-
cations algorithms is the large quantity of information that
has to be processed and the high amount of data depen-
dencies among the different stages of the execution. The
first of these qualities makes it difficult to fit the design into
the available resources, complicating the management of all
these data as the implementation of the algorithm runs. The
second one difficults to use techniques as parallel process-
ing and pipelining, because a stage of the process has to
wait for the results of previous ones before performing its
functions.

DDST is the perfect subject of study, due to the neces-
sity for performing several multiplications, square roots, di-
rect and inverse FFTs, trigonometric functions (sine and co-
sine calculations), and other complex operations on a high
quantity of data. All the stages of the process depend on
the results of the previous ones, so it is difficult to imple-
ment parallel processing in the architecture. The following
section will shortly describe the main problems faced while
designing the architecture, and the solutions implemented
to overcome them.

2 The implementation

Before going into detail, it is important to mention that
the resulting architecture combines both a hardware and a
software approach, because this solution gives the system
a high processing speed for large amounts of data, while
maintaining a simple control interface. The final result is
easily configurable and to modify and even to replace an
important section of it by another one, as improvements in
the DDST algorithm are made, is a simple process.

2.1 Vector reshaping and arithmetic mean
obtaining

Obtaining the arithmetic mean, or average, from a set
of data, is an operation required by a great amount of DSP
techniques, as its statistical properties can be used to ex-
ploit a pattern in the information, or just because it allows
the management of a smaller amount of data that still ex-
hibit some characteristics of the original set. DDST re-
quires the execution of this operation several times along
its processing, but the average depends on the reshaping of
a vector into a matrix, that is, starting from a vector V of
Nelements, a matrix is obtained by the rearrangement of
such elements as a matrix of dimensions |M × P |, where P
is equal to N/M . An example of this operation is a vector
V of 12 elements, that is then reshaped as a matrix Mv of
dimensions |4× 3|. Once the matrix has been obtained, the
average of each row is obtained as shown in figure 1.

Figure 1. Arithmetic mean from the rows of a
matrix.

As it can be appreciated, the result of applying all the
averages is a new vector Y ofM elements (y1, y2, · · · , yP).

These two operations are accelerated by a hardware
module that reads, directly from a dedicated on-chip mem-
ory (a storage structure that manage one or more of the
memory blocks of the FPGA), M data, each one of 32 bits,
accumulating their respective values to M 32 bits registers.
At the end of the process, they are multiplied by 1/(P), so
now they contain the arithmetic means of the rows from the
reshaped matrix (the explained vector Y). Finally, the re-
sults are stored in another on-chip memory. Figure 2 shows
the architecture of this module (control is not explicitly in-
cluded). The shown multipliers (right side of the picture)
work with 64 bits arithmetic, so it does not experiment

356

any resolution loss until the final result is truncated to 32
bits. This way, the same values obtained by a single pre-
cision floating point unit (or software implementation) are
obtained by this module with more simple operations.

Figure 2. Architecture of the vector reshaping
and average accelerator.

2.2 Magnitude of a vector of complex ele-
ments

There are several algorithms in which it is necessary to
work with only the magnitude of the complex elements of a
vector. The high complexity of these operations comes not
from the two multiplications required to obtain the squares
of the real and imaginary parts of a complex number, but
from the necessity to perform a square root.

Figure 3 presents a block diagram of the implemented
magnitude accelerator that, as its name says, calculates each
one of the norms from the complex samples in a vector V
of n elements, as shown in (1).

Figure 3. Architecture of the magnitude hard-
ware accelerator.

√
vr

2(k) + vi
2(k) (1)

with V = {vr(k) + vi(k) ∗ i ∈ C | ∀k from 0 to n-1}

The module has several advantages over the software-
only version:

1. It fetches both the real and the imaginary parts of the
complex numbers each time it performs a read opera-
tion.

2. It works with 64 bits arithmetic, so there is no change
in the accuracy of the result.

3. As the square root is calculated by the means of a hard-
ware submodule (explained bellow), it runs faster than
a software-only version running in the same system, as
it does not need to change from fixed to floating point
arithmetic.

4. It accumulates all the magnitudes as it works, so at the
start of the process it can be decided if it will return
either all the norms of the vector, or only their sum-
mation, depending on the requirements of the stage in
which the module is used.

5. It is possible to assign an “offset” so, for example, the
module only obtains the norm of the complex samples
in positions 0, 4, 8, ..., etcetera, and not from every
sample in the input vector.

6. It has little latency, as it obtains and stores data from
and to dedicated on-chip memories.

2.2.1 Square root

The square root is solved by a submodule in which the 8
more significant bits of the root are obtained from a look-
up table. This could be considered an approximated root,
that then can be fine tunned. Each iteration calculates, in
parallel, 4 bits of the root, and not only one. This system is
depicted in figure 4.

The approximated root is obtained from the look-up ta-
ble using as index the most significant bits of the radicand.
Then this value is appended to a set of possible roots that
are squared and compared to the original radicand. A com-
parator tree evaluates all the results and decides which of
the possible roots gave the smallest error. This value is then
updated, as the new approximated root and the next four bits
are calculated. With each iteration, the approximated root
of the possible set of roots grows four bits, until it reaches
the least significant bit. In addition, the submodule stops
as soon as it finds an exact root, so not all entries take the
same amount of cycles to be calculated. The bit length of
the look-up table memory is important because of the trade-
off between the the number of iterations necessary to have
the best square root calculation and the amount of storage
capacity necessary to accommodate the approximated roots.

357

Figure 4. Architecture of the root hardware submodule.

2.3 FFT

As it was mentioned in the introduction, there are many
FFT implementations, so it was decided that this prob-
lem was tackled from the perspective of the following fact:
DDST,as many other algorithms, is a technique that is cur-
rently under research, so it is possible that several parts of
its associated algorithm change when a better option is dis-
covered. An easy to modify and flexible architecture is a
very desirable quality in this situation. In addition, it would
be better if the changes to the architecture could be done
by a person with little knowledge of the system. Because
of this, the objective of this section of the architecture was
to found a solution that would satisfy as much as possible
these characteristics.

The implementation uses a modified version of an Altera
FFT example that uses the manufacturer’s tool named C-
to-Hardware Acceleration Compiler, or C2H compiler for
short, that can convert C language subroutines into hard-
ware accelerators. Even though the designer does not have
full control over the process, C2H can improve some of the
architecture’s design and implementation time. Obviously,
this technology is hardly dependent on the Altera technol-
ogy, but the combination of other options like Impulse C
with Xilinx ISE and XPS, or the use of Celoxica’s Han-
del C along with the tools of Xilinx or Altera, can be used
to obtain very similar characteristics. Under these schemes,
modifications on the original algorithm can be implemented
by modifying a section of the software part of the system,
which is then compiled into a hardware accelerator and not
only into an executable code.

2.4 Complex Exponential (as trigonomet-
ric functions)

The majority of the implementations that deal with com-
plex exponentials exploit the Euler formula (eix = cosx +
isinx) to solve them as a pair of trigonometric functions
(sine and cosine).

Advantages and disadvantages of the different ap-
proaches were already discussed, but it was also mentioned
that the implementations based on mathematical series have
been out of reach for the majority of the hardware architec-
tures, until recently. While Taylor series are still very com-
plex and slow (because of their large convergence time),
there is another kind of series that are more suitable for
hardware solutions: the Chebyshev polynomials, that con-
verge faster and need fewer calculations to obtain the same
resolution [5].

As the grade of the polynomial grows, the precision of
the function approximation also grows. Equation (2) shows
the iterative rule that allows the calculation of any Cheby-
shev polynomial:

Tk(x) = 2xTk−1(x)− Tk−2(x) ∀k ≥ 2 (2)

Figure 5 shows the block diagram of the accelerator
based on the Chebyshev approximation. CsK and CcK in-
dicate constants that are equal to the Chebyshev coefficients
that multiply each element of the polynomial. The first cy-
cle they are multiplied by the input value that is stored in β.
The next multiplications depend on the degree of the poly-
nomial element. For example, the third element (Rs1) will
be updated by the results of three multiplications, to obtain

358

the value Cs3 ·x3. Once all the elements from both sine and
cosine polynomials have been added, the estimated values
are multiplied by a complex number from the vector to op-
erate. This value is read from the SDRAM and the complex
product is written to the same memory. Once this process is
finished, the value of β is updated according to k (from 0 to
N), and the same explained operations are performed again.
In total, the whole process is performed N times.

Figure 5. Architecture of the complex expo-
nential accelerator.

3 Full system

A pure HDL implementation of the DDST architecture
requires a very complex control, and also in a logic that can-
not fit on the majority of FPGAs without sacrificing speed
for resources usage. The alternative proposed in this work
is a system on a chip that runs a series of C programs, but
leaves the most computer intensive or memory demanding
operations to the special hardware accelerators described in
the past section. A very general architecture of the system
can be seen on figure 6.

There are two kind of ports that can access or be accessed
through the interconnect fabric: the slave and the master.
Slaves are used to receive signals from other components of
the system so they can be controlled. Meanwhile, masters
can manage other components and perform actions like do-

ing a memory read or write. In SOPC builder (the Altera
tool for the building of embedded systems), a master can
read or write up to 1024 bits on each memory access and
not only can they communicate with on-chip memories, but
also with any other memory device in the system. All that
is needed is the base address of such memory and the exis-
tence of a controller for this last one. Those controllers are
usually provided by Altera, like in the case of the SDRAM.

Figure 6. Architecture of the full system.

4 Results

It is difficult to compare the performance of a hybrid
architecture with other systems, overall because the algo-
rithm is expected to run in mobile devices. It was decided
to compare the performance and physical characteristics of
a software-only implementation also based on the NIOS II
processor running in the same FPGA against the hardware
accelerated system.

Implementation Software Hardware
Max. Frequency 223.67MHz 223.67MHz

Space (Total) 29% 87%
ALUTs 10% 80%

DSP Blocks 10% 100%

Table 1. Synthesis Summary

359

Implementation
Operation Software only Hardware accelerated

cycles time [ms] cycles time [ms]

Performance
increment

Vector reshape and average (1024 elements) 160645 1.61 2223 0.02 80.5x
1024 points FFT 1541710 15.42 56701 0.50 30.84x

Norm of 1024 complex data 3131035 31.33 116597 1.17 26.78x
18432 cosine and sine calculations 354246321 3542.19 3710402 36.93 95.91x

Total time of DDST execution 438653043 4386.53 14018812 45 31.29x

Table 2. Comparisons between software-only and hardware optimized operations

Data relative to the physical characteristics of the sys-
tems are shown in table 1, while time comparisons for dif-
ferent operations performed in both implementations can be
found in table 2.

The number of performed operations in table 2 are typ-
ical of DDST simulations, so they give a pretty good idea
of the time that a real implementation would require before
obtaining the expected results.

5 Conclusions

An alternative solution that uses both a hardware and
a software approach was developed to allow the imple-
mentation of a digital communications receiver based on
Data-dependent Superimposed Training. A hardware only
approach allows the building of fast processing systems,
but problems like the one of the DDST receiver show that
sometimes the necessary logic for the control of these sys-
tems presents a very high complexity. Moreover, when the
amount of data to process is very high, and several data de-
pendencies are present, techniques like parallel processing
or pipelining are difficult to exploit, usually leading to ar-
chitectures so large they cannot fit into mid-range FPGAs.
On the other hand, when the solution is based only on a
software approach, processing speed is very low for the re-
quirements of many digital communications devices (like in
the case of the mobile systems).

The hybrid software-hardware approach demonstrated to
be very versatile and flexible, allowing fast implementation
of several kinds of algorithms and their fast modification,
from a small change in the input parameters values to the
alteration of a full stage of the process. In fact, the built pro-
totype fits perfectly into the study of the DDST algorithm,
as this algorithm is still under study and constant modifica-
tions and improvements have been made over it. If future
changes in the algorithm require a significant modification
of any of the accelerators, it will be very easy to adapt the
whole system.

Additionally, some efficient solutions for typical DSP
problems were designed and tested, like the described look-

up tables / parallel / iterative implementation for the square
root calculation, and the parallel Chebyshev approximation
architecture for the solution of trigonometric functions (and
consequently of complex exponentials).

References

[1] S. Saponara, L. Fanucci, L. Serafini: Low-Power
FFT/IFFT VLSI Macro Cell for Scalable Broadband
VDSL Modem, iwsoc, p. 161, The 3rd IEEE Interna-
tional Workshop on System-on-Chip for Real-Time Ap-
plications (IWSOC’03), 2003.

[2] Jose Alberto Vite-Frias, Rene de Jesus Romero-
Troncoso, Alejandro Ordaz-Moreno: VHDL Core for
1024-Point Radix-4 FFT Computation, reconfig, p. 24,
2005 International Conference on Reconfigurable Com-
puting and FPGAs (ReConFig’05), 2005.

[3] Piromsopa, K, Aportewan, C. and Chongstitvatana, P.:
An FPGA implementation of a fixed-point square root
operation, Inter. Symposium on Communications and In-
formation Technology, Vol. 14-16, Thailand, 2001, pp.
587-589.

[4] Enrique Alameda-Hernandez, Desmond C. McLer-
non, Aldo G. Orozco-Lugo, Mauricio Lara and Mounir
Ghogho: Synchronization and DC-Offset Estimation
for Channel Estimation Using Data-Dependent Super-
imposed Training, EUSIPCO 2005, Turkey, September
2005.

[5] J. C. Mason, David, Christopher Handscomb:
Chebyshev Polynomials, CRC Press, 2001, ISBN:
ISBN:0849303559, pags. 1-3, 105-112.

[6] Fernando Martı́n del Campo, René Cumplido, Roberto
Perez-Andrade, A. G. Orozco-Lugo: A SOPC Ar-
chitecture for Data-dependent Superimposed Training
Channel Estimation, Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC) 2008, Barcelona,
July 2008.

360

